(c) Five masses $2 \mathrm{~kg}, 5 \mathrm{~kg}, 1 \mathrm{~kg}, 5 \mathrm{~kg}$ and 2 kg are placed on a mass less rod as shown in figure. The distance between consecutive masses is 0.2 m . Find the moment of inertia about the perpendicular axis passing through the centre of mass.

Unit - II

V (a) The acceleration due to gravity at a height h above the earth's surface is $9.1 \mathrm{~m} / \mathrm{s}^{2}$.
Find h if the surface value of g is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ and radius of earth is 6400 km .
(b) Obtain n expression for the orbital velocity and period of revolution of an artificial satellite revolving close to the surface of the earth.
(c) Explain the concept of geostationary satellite. Derive an expression for its height above the earth.

OR
VI (a) Prove that first cosmic velocity $V_{0}=\sqrt{g R}$
(b) State Newton's Law of Universal Gravitation. Show that the acceleration due to gravity $\mathrm{g}=4 / 3 \pi \mathrm{G} \rho \Upsilon$ where ρ is the mean density of earth and R is the radius of earth.
(c) Two iron spheres each of radius 50 cm are placed at a distance 2 m between their centres. If the force of attraction between them is $2.923 \times 10^{-4} \mathrm{~N}$, Determine the gravitational constant G. Density of iron is $8000 \mathrm{~kg} / \mathrm{M}^{3}$.

