(c) Five masses $2 \mathrm{~kg}, 5 \mathrm{~kg}, 1 \mathrm{~kg}, 5 \mathrm{~kg}$ and 2 kg are placed on a mass less rod as shown in figure. The distance between consecutive masses is 0.2 m . Find the moment of inertia about the perpendicular axis passing through the centre of mass.

(b) Show that the centripetal force for a particle of mass m moving along the circle of radius R is $\mathrm{m} \omega^{2} R$
(c) A body of mass M is attached to a string of length L and is revolved in a horizontal plane. If the string can withstand a maximum tension F , show that the maximum angular velocity. With which it can be revolved is given by the equation $\omega=(\mathrm{F} / \mathrm{ML})^{1 / 2}$
UNIT - II

V (a) The acceleration due to gravity at a height h above the earth's surface is $9.1 \mathrm{~m} / \mathrm{s}^{2}$. Find h if the surface value of g is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ and radius of earth is 6400 km .
(b) Obtain n expression for the orbital velocity and period of revolution of an artificial satellite revolving close to the surface of the earth.
(c) Explain the concept of geostationary satellite. Derive an expression for its height above the earth.
IV (a) A string can sustain a maximum tension of 100 N without breaking. A mass of 1 kg is attached to the end of the string 1 m long and is rotated in a horizontal plane. Find out the maximum number of revolutions possible per second.

