TED (15) – 3043	Reg. No
(REVISION — 2015)	Signature
DIPLOMA EXAMINATION IN ENGIN MANAGEMENT/COMMERCIAL PRAC	NEERING/TECHNOLOGY/ CTICE — OCTOBER, 2017
ELECTRICAL TECHNO	OLOGY
	[Time: 3 hours
(Maximum marks : 10	00)
PART — A	
(Maximum marks : 1	0)
	Marks
* I Answer all questions in one or two sentences.	Each question carries 2 marks.
1. Define the capacitive reactance of a capacito	vr.
2. List the main losses in a transformer.	
3. Define back emf in DC motor.	
4. Identify the principle of operation of a DC go	enerator.
5. Define the slip in AC motor.	
	$(5\times2=10)$
PART — B	
(Maximum marks : 30))
II Answer any five of the following questions Each of	question carries 6 marks.
1. Derive an equation for finding the impedance of	f an RLC series circuit.
2. Write short notes on:	

Write short notes on:

- RMS value
- Amplitude (b)
- (c) Phase.
- State and explain Thevenin's theorem. 3.
- Derive the EMF equation of the transformer. 4.
- Explain the general classifications of DC motors with circuit diagram. 5.
- Define armature reaction and list its effects.
- Explain the working principle of three phase induction motor.

 $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit - I

III (a) A capacitor has a capacitance of 10μF and a phase difference of 10°. It is inserted in series with a 100Ω resistor across a 220V, 50Hz line. Find (i) increase in resistance due to insertion of this capacitor (ii) power dissipated in the capacitor and (iii) circuit power factor.

8

(b) With neat sketch explain the method of pipe earthing.

7

OR

IV (a) When a voltage of 100V at 50Hz is applied to a chocking coil A, the current taken is 8A and the power is 120W. When applied to a coil B, the current is 10A and the power is 500W. What current and power will be taken when 100 V is applied to the two coils connected in series.

8

(b) Explain the necessity of earthing of equipment and how it protects the installations from high voltage.

7

Unit — II

V (a) State and explain Superposition theorem.

8

(b) A 50KVA, 6000/250V transformer has 52 turns on the secondary. Determine the number of primary turns and calculate primary and secondary currents.

the _

OR

VI (a) A Wheatstone bridge network has the following resistances; $AB = 10\Omega$, $BC = 15\Omega$, $CD = 25\Omega$, $DA = 20\Omega$ and $BD = 10\Omega$. A cell of 2V with negligible internal resistance is connected across AC, calculate the current in the branch BD.

8

(b) Explain the various types of losses in transformer.

7

Unit — III

UNII — III	
VII (a) A six pole wave wound armature has 780 conductors and a flux of 12 mWb. Find the speed of the armature when generated emf is 400V. What will be the speed when it is lap wound?	8
(b) Explain the significance of back emf in DC motor.	
OR	8
VIII (a) Briefly explain the working principle of DC generator. (b) Explain the necessity and working of three point starters in DC shunt motor.	7
Unit — IV	8
IX (a) Derive the EMF equation of an alternator.	7
(b) Explain the working and applications of servo motor.	
OR	
X (a) Explain the working and applications of stepper motor.(b) Explain the general classifications and application of AC motors.	•